
 International Journal of Computer Trends and Technology Volume 72 Issue 7, 87-92, July 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I7P111 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Analyze and Optimize Data Pipelines with Effective Data

Models

Piyush Pandey

Independent Researcher, NC, USA.

1Corresponding Author : piyush.lohaghat@gmail.com

Received: 17 May 2024 Revised: 28 June 2024 Accepted: 17 July 2024 Published: 31 July 2024

Abstract - In the current data-driven world, all organizations rely on data warehousing solutions to conduct their daily

operations and decision-making. Refreshing the data in analytical data warehouses in a timely manner is one of the critical goals

of the data operations team. Technology has advanced a lot over the last couple of decades with the evolution of innovative and

powerful processing engines, e.g. Spark, Hadoop, advanced databases, etc. But new challenges like increasing data volume,

integration of additional sources, complex transformations, datasets for new use cases and unforeseen issues keep the operation

teams on their toes. Generally, teams tend to add more resources (CPU, RAM, etc.), which is an easy way out for temporary

respite. However, nothing comes for free – more resources mean increased infra costs. Hence, there is a need to dig deeper and

analyze the ETL [1] processes to identify the bottlenecks and suggest corrective actions/ design changes. While doing a deeper

analysis, the run history of ETL jobs is crucial for ensuring data integrity, optimizing performance, and maintaining overall

system health. There should be enough buffer time to meet SLAs [2] in case of abends or unforeseen issues. Most of the research

on ETL performance is focused on the "how" to optimize data refresh times, but there is less research done to identify "what" to

optimize. Moreover, analysis and optimization of ETL require not only the technical skillset, but also a functional understanding

of the nature of data. This article talks about approaches to analyze an ETL run and identify what are the problematic ETL steps.

This article also talks about processes and ways to improve pipeline performance based on appropriate data models [3] and

actions, with a knowledge of domain data.

Keywords - Data Pipeline Analysis, Effective data models, ETL Extract Transform and Load, Optimize Datawarehouse.

1. Introduction
Data pipelines facilitate the extraction, transformation,

and loading (ETL) of data from disparate sources into

centralized repositories, such as data warehouses or data lakes.

With the increasing volume, variety, and velocity of data,

optimizing these pipelines has become imperative. Effective

data models play a critical role in ensuring data pipelines are

both performant and scalable.

As organizations expand, they encounter a surge in data

volume. Properly optimized ETL (Extract, Transform, Load)

processes are crucial for efficiently managing larger datasets

without experiencing significant performance drops. These

streamlined ETL systems can easily adapt to various data

sources, formats, and evolving business needs without

necessitating major overhauls. Efficient ETL processes also

help mitigate the burden on both source and target systems,

preventing performance bottlenecks that could negatively

impact other applications, concurrent processes, and users.

Organizations that can swiftly process and analyze data gain

a competitive edge by obtaining insights faster and making

timely business decisions ahead of their competitors.

Streamlined ETL systems enable businesses to experiment

with new data sources and analytics techniques without being

limited by performance concerns.

For data analysts, data scientists, and business users,

reliable ETL processes are essential for accessing the data they

need. Slow or unreliable ETL systems can cause frustration

and hinder these professionals' ability to perform their tasks

effectively. Efficient ETL processes support self-service

analytics by providing accurate and timely data, empowering

users to explore and analyze information independently.

1. 2. Literature Review
Streamline and optimization of ETL pipelines can be

addressed by various means. Eg. Following ETL best

practices, implementing ETL and data-warehouse on best tech

stacks available, increasing storage and computing power, etc.

However, it is critical to understand gaps and problems in

current implementation before ETL can be optimized. ETL

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:1

Piyush Pandey / IJCTT, 72(7), 87-92, 2024

88

performance problems should be addressed and reviewed

from a data model and functional standpoint as well. A

comprehensive research and study have already been done on

optimizing ETL and best practices for ETL development.

A study by Dhamotharan Seenivasan [4] outlines the ETL

best practices for performance optimization and ETL design.

Another study for ETL performance improvement gives

insights into the query cache approach. [5]

An article by Lina Dinesh and Gayathri Devi [6] proposes

algorithms for handling and optimizing large volumes of data

on ETL processes based on cloud computing.

optimizing ETL processes, companies can lower operational

costs by reducing the need for extensive computational and

storage resources, which is particularly beneficial in cloud

environments where resource utilization directly affects

expenses.

The literature review by Mozamel M. Saeed1, Zaher Al

Aghbari, and Mohammed Alsharidah [7] discusses spark

optimization techniques from a spark data clustering

perspective.

An article by Xiang Wu and Yueshun He [8] addresses

some of the ETL performance concerns on Spark with respect

to join optimizations. The article also discusses how a table

profile relates to spark optimization schemes.

A review of existing open literature suggests that not

enough research has been done to optimize ETL using

application domain knowledge and data models. Although

ample studies are addressing ETL performance concerns, they

are lacking in an approach to analyze and find the root cause

of ETL performance issues.

3. ETL Job Summary
During the ETL process, the total run time comprises the

durations of extraction, data transformation, and loading to

the target warehouse. The end users have access to refreshed

data after all the steps are completed successfully. The total

duration of the ETL process could be the sum of each step, or

there might be overlaps among the steps. This article will

consider that each step is being executed in series.

Additionally, the scenario considered in this article has both

the source and target relational databases, and the

transformation is performed using Spark in a file system.

The first step in analyzing any ETL run is to review the

high-level job summary, focusing on the time taken and the

number of records processed. The statistics for a given

pipeline run should be compared with historical stats and

trends. By examining these data points, one can identify which

ETL steps require further analysis. For example, as shown in

Table 1, the transform step is the longest-running step, with an

average duration of 96 minutes. In the current run, the

transformation step took 110 minutes, which is longer than the

historical 60-day average. Therefore, to optimize this pipeline,

one should start by diving deeper into the transformation run

time details. While discussing all three steps, the primary

focus will be on the transformation step.

Table 1. Job summary for an ETL run

Job

Summary

Current Run

Summary

Historical Average

(60 Days)

 Duration

(Mins)

Records

 ('000)

Duration

(Mins)

Records

 ('000)

Total 164 136

Extract 23 3,479 21 3,189

Transform 110 7,409 96 7,118

Load 21 6,918 19 6,598

When reviewing the job summary and setting

benchmarks for performance or SLAs, it is also essential to

consider the resources and workload involved during a

specific data pipeline run.

Table 2. Key KPIs description

Executors [9]

A process launched for an application

on a worker node. The higher the

number of executors, the higher the

number of worker nodes.

CPUs
Number of CPUs

data Read

During transformation, data from

tables will be read from storage. Data

read depends on transformation logic

and table size. In some cases,

transformations written to scan full

tables will have high data reads

compared to transformations written in

an optimized manner with incremental

delta processing.

Data Written
Transformed data written back to

storage.

#Tables

Transformed

Number of transformed objects,

including stage and final objects.

Load Plans

An incremental pipeline can bring data

from different systems and

functionalities to different areas. Sales

data from OLTP, warranty data from

flat files, etc.

Throughput
of Records process/ Time taken

Error Rates
Frequency or count of error records

(duplicates, schema mismatch, etc.)

Piyush Pandey / IJCTT, 72(7), 87-92, 2024

89

249 GB

Fig. 1 Key KPIs to note During ETL run analysis

4. Extraction Step
The first step to analyzing extraction is to get a list of

extraction objects/ queries which are regularly running for a

longer duration and impacting downstream jobs. Incremental

Delta Extraction [10]: Extract the data that has changed since

the last ETL run. This reduces the volume of data being

processed.

Sometimes, there are cases when source data sets do not

have a way to identify updates (last updated date not

available), or datasets can go through hard deletions. In such

cases, one alternative could be to check if any triggers or logs

are available in the source which captures deleted transactions.

Also, instead of extracting such datasets in full for all the

columns, check for the possibility of extracting only the key

columns and determine deleted records on the transformation

side.

Source Filtering: Apply filters at the source database level

to reduce the amount of data extracted. Extract only the

necessary data columns and rows required for processing.

Instead of issuing complex queries to source systems, extract

and stage individual datasets locally. Do the joins and heavy-

duty operations post extracting the base data instead of

overloading source systems.

5. Transform Step
During the transform step, the extracted data is converted

into a format required for analysis. During this step, the data

is cleaned, filtered, joined with other datasets, aggregated, etc.,

to achieve business and functional objectives.

To analyze the performance bottlenecks during the

transformation step, the first step is to determine the

transformation which is holding the pipeline. List down the

top n (5) steps which are running for the longest duration.

In the table below (Table 3), Revenue_Fact is running for

the maximum duration of 22 minutes, followed by

Sales_Agg_Fact, taking 20 minutes. At first glance, it makes

sense to analyze Revenue_Fact transformation first. However,

Revenue_Fact is running Parallel to Sales_Fact. So, unless

both Revenue_Fact and Sales_Fact are analyzed and tuned,

the overall pipeline time will not improve much. On the other

side, Sales_Agg_Fact is running in parallel to

Sales_Backlog_Fact but Sales_Backlog_Fact finishes in 5

minutes. This means Sales_Agg_Fact is running in standalone

mode for the remaining 12 minutes, thus holding the pipeline.

If Sales_Agg_Fact performance can be analyzed and

improved, there is a better chance of bringing down the run

time of the pipeline.

Once the consistently long-running transformations are

identified, further analysis is required to identify the long-

running cause. The time spent on the transformation step

depends on a lot of factors, such as data volume processed

during an incremental run, complexities involved in

transformation logic, the underlying data model design,

resources available for processing, etc. While there could be

numerous reasons behind the above factors, a few scenarios

will be explained with examples.

Next, lets focus on Sales_Stage, which is taking 18

minutes. In the given example, Sales_Order_Header and

Sales_Order_Lines datasets are joined together to populate

Sales_Stage. During incremental, a changed or new record

could flow in either Sales_Order_Header or

Sales_Order_Lines. Hence, incremental changes on both input

objects should be considered, which means

Sales_Order_Header (500 M records) will be joined with

Sales_Order_Lines (2 B records) before incremental data

filters can be applied. Cases like this could be very costly and

resource-intensive operations. Joining large datasets requires

careful consideration of indexing, query optimization, and

resource management to ensure efficient performance. On the

other hand, joining small datasets is generally straightforward,

focusing on minimizing overhead and ensuring in-memory

operations.

Table 3. Top 5 Long-Running transformations

Object Name
Duration

(Mins)

Records

 ('000)

Start

Time

End

Time

Revenue_Fact 22 57 14:00 14:22

Sales_Agg_Fact 20 20 14:22 14:42

Sales_Stage 18 37 13:42 14:00

Sales_Fact 17 10 14:00 14:17

Sales_Backlog_Fact 5 5 14:22 14:27

Executors

10

Tables Transformed

131
Data Read

190 GB

Load Plans

15

CPUs

8

Data Written

249 GB

Piyush Pandey / IJCTT, 72(7), 87-92, 2024

90

 Fig. 2 Lineage for a transformed object

Fig. 3 Modified Lineage to Load Stage (Sales_Stage) table

One possible way to eliminate such joins between high-

volume tables could be to stage the necessary data before the

join. Identify changed Sales_Order_Ids from

Sales_Order_Header and Sales_Order_Lines into a stage table

Sales_Changed_Orders. Join the list of changed orders

Sales_Changed_Orders with both Sales_Order_Header and

Sales_Order_Lines to create another set of stage tables

Sales_Order_Header_Stage and Sales_Order_Lines_Stage.

These stage tables will only have the data for today's changed

data. The volume stage tables Sales_Order_Header_Stage and

Sales_Order_Lines_Stage would be much less compared to

Sales_Order_Header_Stage and Sales_Order_Lines_Stage.

Hence, the Sales_Stage transform, which earlier was taking 18

minutes, could finish much faster. In this example, with the

modified lineage (Figure 3), the run time for Sales_Stage was

reduced from 18 minutes to 2 minutes. Although there were

additional intermediate steps introduced, but join of two large

tables was avoided, thus providing a net benefit on the run

times.[8] The impact could be greater if such datasets (eg

Sales_Stage) are used as an input dataset for multiple

transformations.

For significant data volume transformation, the primary

check is to ensure that appropriate filters are applied either on

the extract step itself or in the transformation logic. The filters

should be pushed to the initial stages of transformations.

Additionally, the use of operators like distinct, sort-by, and

non-equi joins should be carefully reviewed.

Revenue_Trx

Revenue_Trx_Lines

Sales_Order_Header

Sales_Order_Lines

Revenue_Stage

Sales_Stage

Revenue_Fact

Sales_Fact

Sales_Backlog_Fact

Sales_Agg_Fact

Union

Join

Join

Join

Sales_Order_Header

Sales_Order_Lines

Sales_Changed_Data

(Changed Order IDs

from Header and Lines

Sales_Order_Heade

r (Changed)

Sales_Order_Lines

(Changed)

Sales Stage)

Piyush Pandey / IJCTT, 72(7), 87-92, 2024

91

Table 4. Sales_Stage run time comparison with modified approach

Object Name State
Duration

(Mins)

New Records

 (000)

Total #Records

 (000)

Sales_Order_Header Earlier 2 2 500,000

Sales_Order_Lines Earlier 4 18 2,000,000

Sales_Stage Earlier 18 37 37

Sales_Order_Header

(Changed)
Modified 2 2.5 2.5

Sales_Order_Lines

(Changed)
Modified 3 24 24

Sales_Stage Modified 2 37 37

There could be scenarios where a transactional dataset

(e.g. Sales) is joined to a dimensional dataset (e.g. Customer).

During the design phase, it should be carefully evaluated if

changes to the dimensional dataset should be listened to or not.

Based on the nature of data and cardinality, an update on a few

customer records can cause huge updates for the final dataset.

All the above considerations can be applied only when

analysis is done with a functional background with a clear

understanding of data transformation logic.

6. Load Step

The load phase is the final step of the ETL process, where

transformed data is exported and loaded into a data warehouse.

The time spent on this step depends on various factors, such

as the volume of data, table schema, table size, data warehouse

capacity (in terms of CPU and other resources), throttling, and

concurrent processes or queries using data warehouse

resources during the pipeline load.

 During the load step, records can be inserted, updated

(deleted and reinserted), or deleted. The larger the number of

records processed during an incremental run, the longer the

load times will be. Additionally, the larger the size of the

warehouse table, the more costly delete and update operations

are.

Some basic data modeling techniques can help improve

load times, including table partitioning [11] and managing

table indexes. For example, consider a scenario where the

Sales_agg_fact table aggregates sales data by month. Records

for the current month's aggregate will receive daily updates,

while older months' data remain stable. Updating (or deleting

and inserting) the current month's records in a 100-million-

row table can be a costly operation. However, partitioning the

table by month and then updating only the current month's

partition simplifies the operation significantly.

Index management [12] also plays a crucial role during

the load process. Indexes are generally defined on all

warehouse tables to optimize reporting performance.

However, indexes can slow down the load (write) process.

Therefore, it may be beneficial to disable indexes during the

load operation and re-enable them once the load is complete.

3. 7. Conclusion

In conclusion, ETL processes are critical for ensuring

reliable and scalable data management in today's data-driven

business world. Various business operations continually

modify and enter data into source systems, causing ETL run

times to vary proportionally with these changes. Events such

as month-end closings or bulk updates in source systems can

significantly extend pipeline run times.

To maintain optimal ETL performance, continuous

analysis of pipeline run statistics, trend analysis, proactive

monitoring, and ongoing improvements are essential.

Leveraging advancements in technology, particularly the

integration of Machine Learning (ML) and Artificial

Intelligence (AI) capabilities, can further enhance monitoring

and proactive measures.

ML algorithms can predict the need for additional

capacity to handle high data volumes based on incremental

updates in the source systems and can automatically provision

this capacity for a given run. Additionally, automation can

provide real-time insights and predict ETL completion times,

making the entire process more efficient and responsive to

changing demands.

However, the underlying data model for the pipeline

remains a vital driver of pipeline performance. A top-down

approach of analyzing pipelines, and key KPIs [13], taking a

balanced approach in terms of tech stack enhancement and

data model optimization is a must to ensure a healthy pipeline

and ever-changing data warehousing solutions.

References
[1] Ralph Kimball, and Joe Caserta, The Data Warehouse ETL Toolkit: Practical Techniques for Extracting, Cleaning, Conforming, and

Delivering Data, Wiley, 2013. [Google Scholar] [Publisher Link]

[2] CIO, What is an SLA? Best Practices for Service-Level Agreements. [Online]. Available:

https://www.cio.com/article/274740/outsourcing-sla-definitions-and-solutions.html

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C22&q=The+Data+Warehouse+ETL+Toolkit%3A+Practical+Techniques+for+Extracting%2C+Cleaning%2C+Conforming%2C+and++++Delivering+Data&btnG=
https://www.oreilly.com/library/view/the-data-warehouse/9780764567575/

Piyush Pandey / IJCTT, 72(7), 87-92, 2024

92

[3] IBM, What is data Modeling?. [Online]. Available: https://www.ibm.com/topics/data-modeling

[4] Dhamotharan Seenivasan, “Improving the Performance of the ETL Jobs,” International Journal of Computer Trends and Technology,

vol. 71, no. 3, pp. 27-33, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[5] Vishal Gour et al., “Improve Performance of Extract, Transform and Load (ETL) in Data Warehouse,” International Journal of Computer

Science and Engineering, vol. 2, no. 3, pp. 786-789, 2010. [Google Scholar] [Publisher Link]

[6] Lina Dinesh, and K. Gayathri Devi, “An Efficient Hybrid Optimization of ETL Process in Data Warehouse of Cloud Architecture,”

Journal of Cloud Computing, vol. 13, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[7] Mozamel M. Saeed, Zaher Al Aghbari, and Mohammed Alsharidah, “Big Data Clustering Techniques Based on Spark: A Literature

Review,” Peer Journal of Computer Science, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[8] Xiang Wu, and Yueshun He, “Optimization of the Join between Large Tables in the Spark Distributed Framework,” Applied Sciences,

vol. 13, no. 10, pp. 1-14, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[9] Apache Spark, Cluster Mode Review. [Online]. Available: https://spark.apache.org/docs/latest/cluster-overview.html

[10] Fahb Sabry Esmail Ali, “A Survey of Real-Time Data Warehouse and ETL,” International Scientific Journal of Management Information

Systems, vol. 9, no. 3, pp. 03-09, 2014. [Google Scholar] [Publisher Link]

[11] VLDB and Partitioning Guide. [Online]. Available: https://docs.oracle.com/en/database/oracle/oracle-database/21/vldbg/

[12] Database Administrator’s Guide. [Online]. Available: https://docs.oracle.com/en/database/oracle/oracle-database/23/admin/managing-

indexes.html

[13] KPI/Metrics. [Online]. Available: https://docs.oracle.com/cd/E99929_01/html/sm_41_omuser/omg_kpi_metrics.htm

[14] Purnima Bindal, and Purnima Khurana, “ETL Life Cycle,” International Journal of Computer Science and Information Technologies, vol.

6, no. 2, pp. 1787-1791, 2015. [Google Scholar] [Publisher Link]

[15] Swapnil Gohre, ETL in Near-Real Time Environment: Challenges and Opportunities, 2020. [Google Scholar]

https://www.ibm.com/topics/data-modeling
https://doi.org/10.14445/22312803/IJCTT-V71I3P105
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C22&q=Improving+the+Performance+of+the+ETL+Jobs&btnG=
https://ijcttjournal.org/archives/ijctt-v71i3p105
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C22&q=Improve+Performance+of+Extract%2C+Transform+and+Load+%28ETL%29+in+Data+Warehouse&btnG=
https://www.enggjournals.com/ijcse/issue.html?issue=20100203
https://doi.org/10.1186/s13677-023-00571-y
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C22&q=An+efficient+hybrid+optimization+of+ETL+process+in+data+warehouse+of+cloud+architecture&btnG=
https://link.springer.com/article/10.1186/s13677-023-00571-y
https://doi.org/10.7717/peerj-cs.321
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C22&q=Big+data+clustering+techniques+based+on+Spark%3A+a+literature+review&btnG=
https://peerj.com/articles/cs-321/
https://doi.org/10.3390/app13106257
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C22&q=Optimization+of+the+Join+between+Large+Tables+in+the+Spark+Distributed+Framework&btnG=
https://www.mdpi.com/2076-3417/13/10/6257
https://spark.apache.org/docs/latest/cluster-overview.html
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C22&q=A+Survey+of+Real-Time+Data+Warehouse+and+ETL&btnG=
https://www.ef.uns.ac.rs/mis/archive
https://docs.oracle.com/en/database/oracle/oracle-database/21/vldbg/
https://docs.oracle.com/en/database/oracle/oracle-database/23/admin/managing-indexes.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/admin/managing-indexes.html
https://docs.oracle.com/cd/E99929_01/html/sm_41_omuser/omg_kpi_metrics.htm
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C22&q=Etl+life+cycle&btnG=
https://www.ijcsit.com/ijcsit-v6issue2.php
https://scholar.google.com/scholar?q=ETL+in+Near-Real+Time+Environment:+Challenges+and+Opportunities&hl=en&as_sdt=0,5

